مقایسه روشهای نروفازی، شبکه عصبی و رگرسیون چند متغیره در پیشبینی برخی خصوصیات خاک (مطالعه موردی: استان گلستان)
Authors
Abstract:
با توجه به مشکلات اندازهگیری مستقیم برخی از ویژگیهای خاک، در سالهای اخیر از روشهای غیر مستقیم برای برآورد این خصوصیات استفاده میشود. بدین منظور، در این پژوهش140 نمونه جمع آوری شده از منطقه گرگان مورد آزمایش قرار گرفته و فراوانی نسبی ذرات، کربن آلی، درصد رطوبت اشباع و آهک به عنوان ویژگیهای زودیافت و نقطه پژمردگی، ظرفیت زراعی، ظرفیت تبادل کاتیونی و وزن مخصوص ظاهری به عنوان ویژگیهای دیریافت اندازهگیری شدند. سپس کل دادهها به دو سری داده، شامل سری آموزش (80% دادهها) و سری ارزیابی (20% دادهها) تقسیم گردید. به منظور پیشبینی خصوصیات مذکور، از مدلهای نروفازی، شبکه عصبی مصنوعی و رگرسیون چند متغیره استفاده گردید. نتایج ارزیابی مدلها بر اساس شاخصهای ریشه مربعات خطا، میانگین خطا، خطای استاندارد نسبی و ضریب تبیین نشان داد که مدل نروفازی دارای بالاترین دقت در پیشبینی ویژگیهای خاک را دارا میباشد بطوریکه این مدل به میزان 34، 10، 78 و 5 درصد دقت پیشبینی ویژگیهای FC، PWP، CEC و Bd را به ترتیب، نسبت به روش رگرسیون خطی چندگانه افزایش داده است. بعد از این مدل، شبکههای عصبی مصنوعی نسبت به معادلات رگرسیونی کارائی بهتر داشته است.
similar resources
مقایسه روش های نروفازی، شبکه عصبی و رگرسیون چند متغیره در پیش بینی برخی خصوصیات خاک (مطالعه موردی: استان گلستان)
با توجه به مشکلات اندازه گیری مستقیم برخی از ویژگی های خاک، در سال های اخیر از روش های غیر مستقیم برای برآورد این خصوصیات استفاده می شود. بدین منظور، در این پژوهش140 نمونه جمع آوری شده از منطقه گرگان مورد آزمایش قرار گرفته و فراوانی نسبی ذرات، کربن آلی، درصد رطوبت اشباع و آهک به عنوان ویژگی های زودیافت و نقطه پژمردگی، ظرفیت زراعی، ظرفیت تبادل کاتیونی و وزن مخصوص ظاهری به عنوان ویژگی های دیریافت...
full textمقایسه مدلهای شبکه عصبی مصنوعی و رگرسیون چند متغیره در پیشبینی درصد پوشش درمنه کوهی از روی برخی خصوصیات خاک
full text
مقایسه عملکرد شبکه عصبی و رگرسیون چند متغیره در تخمین قیمت مسکن (مطالعه موردی: شهر اهواز)
مسکن همواره نیازی اساسی در جامعه تلقی میگردد. بازار مسکن طی سالهای گذشته یکی از پرنوسان-ترین بخشهای اقتصاد کشور ایران بوده است. از آنجایی که نغییرات بخش مسکن تاثیر فراوانی بر سایر بخشهای اقتصاد دارد بنابراین یکی از نیازهای قابل توجه در امر مسکن، پیشبینی دقیق قیمت این کالا می-باشد. در این راستا در پژوهش حاضر با استفاده از شبکه عصبی مصنوعی پرسپترون چند لایه، مدلی برای پیشبینی قیمت مسکن در ش...
full textمقایسه عملکرد شبکه عصبی و رگرسیون چند متغیره در تخمین قیمت مسکن (مطالعه موردی: شهر اهواز)
مسکن همواره نیازی اساسی در جامعه تلقی میگردد. بازار مسکن طی سالهای گذشته یکی از پرنوسان-ترین بخشهای اقتصاد کشور ایران بوده است. از آنجایی که نغییرات بخش مسکن تاثیر فراوانی بر سایر بخشهای اقتصاد دارد بنابراین یکی از نیازهای قابل توجه در امر مسکن، پیشبینی دقیق قیمت این کالا می-باشد. در این راستا در پژوهش حاضر با استفاده از شبکه عصبی مصنوعی پرسپترون چند لایه، مدلی برای پیشبینی قیمت مسکن در ش...
full textمقایسه روشهای شبکه عصبی مصنوعی و رگرسیون چند متغیره در پهنهبندی خطر زمینلغزش، مطالعه موردی: حوضه ونک، استان اصفهان
زمینلغزشها از مهمترین خطرات طبیعی هستند که نه تنها زندگی انسان را به خطر میاندازند، بلکه باعث ایجاد بار اقتصادی برای جامعه میشوند. با توجه به اهمیت تشخیص مناسبترین روش برآورد صحیح خطر زمینلغزش، در این پژوهش میزان کارایی دو روش شبکه عصبی مصنوعی و رگرسیون چندمتغیره مقایسه شد. بدین منظور ابتدا با استفاده از عکسهای هوایی، تصاویر ماهوارهای، نقشههای زمینشناسی و بررسیهای میدانی نقش...
full textمقایسه روشهای نروفازی، الگوریتم ژنتیک، شبکه عصبی، و رگرسیون چندمتغیره در پیشبینی شوری خاک (مطالعه موردی: شهرستان اردکان)
در سالهای اخیر از روشهای غیرمستقیم برای برآورد شوری خاک استفاده میشود. بدین منظور، در این پژوهش ششصد نمونة جمعآوریشده از منطقة اردکان آزمایش شد و قرائتهای افقی -عمودی دستگاه القای الکترومغناطیس و پارامترهای سطح اراضی ـ شامل شاخص اراضی، شاخص خیسی، و انحنای شیب ـ به عنوان ویژگیهای زودیافت استفاده شد و میزان شوری خاک به صورت وزنی در اعماق 30 و 100 سانتیمتری به عنوان ویژگیهای دیریافت تخمین...
full textMy Resources
Journal title
volume 41 issue 2
pages 211- 220
publication date 2011-01-21
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023